- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bush, Inle (1)
-
Dasgupta, Sanjoy (1)
-
Lichtman, Jeff W (1)
-
Meirovitch, Yaron (1)
-
Navlakha, Saket (1)
-
Zheng, Xingyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Finding optimal bipartite matchings—e.g., matching medical students to hospitals for residency, items to buyers in an auction, or papers to reviewers for peer review—is a fundamental combinatorial optimization problem. We found a distributed algorithm for computing matchings by studying the development of the neuromuscular circuit. The neuromuscular circuit can be viewed as a bipartite graph formed between motor neurons and muscle fibers. In newborn animals, neurons and fibers are densely connected, but after development, each fiber is typically matched (i.e., connected) to exactly one neuron. We cast this synaptic pruning process as a distributed matching (or assignment) algorithm, where motor neurons “compete” with each other to “win” muscle fibers. We show that this algorithm is simple to implement, theoretically sound, and effective in practice when evaluated on real-world bipartite matching problems. Thus, insights from the development of neural circuits can inform the design of algorithms for fundamental computational problems.more » « less
An official website of the United States government
